Pre-hospital Management of Spinal Cord Injuries
Spinal cord injury (SCI) is a serious condition that may lead to long-term disabilities placing financial and social burden on patients and their families, as well as their communities. Spinal immobilization has been considered the standard prehospital care for suspected SCI patients. However, there is a lack of consensus on its beneficial impact on patients' outcome.
The consequences of a spinal cord injury can be catastrophic. Motor vehicle accidents, falls and other mechanisms of injury with the potential to cause spinal cord injuries are common. The first challenge to the EMS provider is recognition and assessment of potential spine injuries. Once a spine injury is suspected, traditional management involves preventing secondary injury with spine immobilization to limit movement and mitigate further injury.
Examination of the patient with suspected spine or spinal cord injury by the EMS provider involves an assessment of motor and sensory function. It has long been axiomatic that the spine should be immobilized whenever a patient experiences trauma that has the potential to cause spine injury. The requirement that the patient have no painful, distracting injury in order to avoid immobilization has proven to be challenging to apply, in part because it is not well defined.
Prehospital management includes examination of the patient, spinal immobilisation, careful airway management (intubation, if indicated, using manual in-line stabilisation), and cardiovascular support (maintenance of mean arterial blood pressure above 90 mm Hg) and blood glucose levels within the normal range. It is still not known whether additional specific therapy is useful. Studies have not demonstrated convincingly that methylprednisolone (MPS) or other pharmacological agents really have clinically significant and important benefits for patients suffering from SCI.
Recently published statements from the United States also do not support the therapeutic use of MPS in patients suffering from SCI in the prehospital setting any more. Moreover, at this stage, it is not known whether therapeutic hypothermia or any further pharmacological intervention has beneficial effects or not. Therefore, networks for clinical studies in SCI patients should be established, as a basic requirement for further improvement in outcome in such patients.
If a significant mechanism of injury has occurred, the patient is unreliable and cannot effectively participate in a spinal clearance protocol assessment. In addition, if the patient has any complaint of pain or tenderness in any location along the length of the spine, or the patient presents with any motor or sensory deficit in the neurologic assessment, the patient must be completely immobilized onto a spine board. An unreliable patient is one who is in an acute stress reaction, is intoxicated by drugs or alcohol, suffered a head injury, has a language barrier, cannot communicate, or has a distracting injury such as an extremity fracture. Improper or lack of immobilization can convert a stable vertebral fracture into an unstable fracture, move fractured bony fragments, or cause dislocated vertebrae to encroach on the cord and lead to secondary injury.
Establish and maintain a patent airway. Assess the tidal volume and rate of respiration. If either the tidal volume or rate is inadequate, provide positive pressure ventilation with supplemental oxygen connected to the ventilation device. If the respirations are adequate, administer oxygen based on the SpO2 reading and patient signs and symptoms of hypoxia or respiratory distress. If the SpO2 is less than 95 percent on room air or the patient is exhibiting signs of hypoxia, administer oxygen via a nonrebreather mask at 15 lpm. An inadequate airway, inadequate ventilation, or poor oxygenation can lead to hypoxia, hypercarbia and acidosis, all of which contribute to secondary spinal cord injury.
Reverse any hypotension through the initiation of an intravenous infusion of normal saline or Lactated ringers with a large bore catheter and macrodrip tubing. Maintain a systolic blood pressure of at least 90 mmHg. The vasogenic component of spinal shock usually produces a systolic blood pressure of approximately 80 mmHg or so. If the fluid infusion is not increasing the pressure or profound signs of hypoperfusion are present, consider a vasopressor agent such as dopamine. Begin at 5 mcg/kg/minute and titrate up quickly. At lower doses, dopamine primarily has a beta effect. Once a dose of 10 mcg/kg/minute is achieved, predominantly alpha stimulation occurs with systemic vasoconstriction.
EMS plays a significant role in attempting to reduce secondary injury of the spinal cord through proper assessment and management. Follow your department's protocols and use your clinical assessment on whether the patient has suffered a vertebral or spinal cord injury to apply spinal motion restriction.